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Intermittent chaos is investigated by means of an extended version of the statistical-mechanical
formalism developed by Sato and Honda [Phys. Rev. A 42, 3233 (1990)]. An exact criterion is
given to classify intermittent systems from the point of view of the generated chaotic phases based on
the probability distribution of laminar lengths which is an explicitly measurable quantity from the
time series. This criterion provides us with the generalization of the concept of intermittency which
broadens the class of critical phenomena associated with the spectrum of dynamical entropies. It is
shown that, in contrast to general belief, the presence of the regular chaos phase (i.e., vanishing Rényi
entropies for inverse temperatures ¢ > 1) is not necessarily related to intermittency. In fact, the
absence of any phase transition or the appearance of an anomalous chaos phase (i.e., infinite Rényi
entropies for ¢ < 0) is also possible in intermittent systems. We derive how the pressure, computed
from a series of signals of increasing length, approaches its asymptotic value in the regular and

anomalous phases.

PACS number(s): 05.45.+b
I. INTRODUCTION AND SUMMARY

Intermittent chaos is a very often observed phe-
nomenon in dynamical systems [1-3]. Recently, a new,
successful statistical-mechanical formalism has been de-
veloped by Sato and Honda [4] (referred to as SH here-
after) in order to describe certain features of intermit-
tency by using an analogy between intermittent systems
and one-dimensional (1D) lattice-gas models [4-7]. They
have also investigated the problem of phase transitions
associated with the singularities in the spectrum of gen-
eralized entropies and obtained various critical exponents
from the g-weighted (with g the inverse temperature)
power spectrum, order parameter, and free energy [5].

It is known that, according to qualitatively different
dynamical behaviors, several chaotic phases may exist
in the spectrum of the Rényi entropies (8], K(g), of
chaotic dynamical systems as pointed out by Csordds and
Szépfalusy [9]: (i) the chaotic chaos phase (CCP) corre-
sponding to a region in the spectrum of the entropies
where K(q) is nonzero and finite, (ii) the regular chaos
phase (RCP) where K(q) is zero, and (iii) the anoma-
lous chaos phase (ACP), which is characterized by infi-
nite Rényi entropies (see also Ref. [10]).

It is interesting to study in which chaotic dynamical
system one or another of these chaotic phases arises. In
the present paper we give an exact answer to this ques-
tion for intermittent systems in the light of the formalism
introduced by SH, providing us with the generalization
of the notion of intermittency. As widely believed, in-
termittency occurs when long series of coherent laminar
behaviors can be observed. In the following we use the
term intermittent for chaotic dynamical systems which
spend much more time in a quasiregular or laminar re-
gion of the phase space than in the chaotic one. As it is
well known, three types of intermittency have been dis-
tinguished by Pomeau and Manneville [1,11,12] according
to the ways a fixed point loses its stability. This classifi-
cation, however, tells nothing about the phase-transition
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phenomena associated with the multifractal properties of
the dynamics. In the past few years considerable efforts
have been made to elucidate the multifractal properties
of chaos; it seems worth working out a classification from
the point of view of dynamical phase transitions. Using
the SH formalism seems to be a very appropiate way to
reach this goal.

In experimentally obtained intermittent signals the
most essential, and simultaneously a simply measurable,
quantity is the probability distribution of laminar lengths
(PDLL), which is also one of the most important inputs
of the SH theory. Our aim here is to formulate a cri-
terion for phase transitions in the K(g) spectrum using
the PDLL of the measured signal or, more generally, on
the basis of the probabilities of homogeneous blocks of
symbols labeling different states of the system.

Systems are generally considered to be intermittent if
they produce signals with long laminar sequences and,
simultaneously, possess asymptotic power-law decay in
their time correlation. This behavior always yields the
appearance of an RCP phase, i.e., K(q) =0forg > 1. In
this paper we apply a somewhat more flexible definition
of intermittency, and consider a signal being intermit-
tent whenever it looks intermittent, i.e., whenever long
uniform blocks show up frequently in the symbolic codes
of the dynamics independently of the form of the cor-
relation decay. In other words, our requirement is that
the PDLL takes on relatively large values for short and
intermediate lengths. In particular, it can happen that
in this region the PDLL is not monotonically decreasing,
but has some structure, e.g., a local maximum at some
finite length. If the PDLL is not negligible on short and
intermediate lengths, we consider the system intermit-
tent anyway, even if the asymptotic form of the PDLL or
of the correlation decay is not of power-law type. Conse-
quently, intermittency of our sense need not be connected
with any phase transition in K(q), or it may also hap-
pen that a transition different from the CCP-RCP one
occurs. In fact, we show that a CCP-ACP transition can
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also be observed in intermittent signals.

As it will be seen in the following sections, nonanalyt-
icies of the dynamical multifractal spectrum correspond-
ing to phase transitions in the thermodynamical formal-
ism are determined by the asymptotic decay rate of the
probability to find long homogeneous symbolic blocks.
We show that the existence of a CCP-RCP or CCP-
ACP phase transition uniquely follows from the asymp-
totic properties of the PDLL above. Furthermore, the
approach to the exact results K(g) = 0 or K(g) = oo can
also be expressed by means of PDLL (see Sec. IV).

We shall use an extended version of the Sato-Honda
formalism, which is more suitable for our investigations
(Sec. II C). We believe that this way of extending the SH
model can be continued to build up a formalism valid for
the general chaotic case. A discussion in this direction
with hints and expectations is given in Sec. VIII.

The paper is organized as follows. In Sec. II we give
a brief review of the SH formalism restricted to a binary
symbolic dynamics as well as the above-mentioned exten-
sion of the same formalism. Section III includes the cen-
tral result of the paper formulating the criterion for the
existence of phase transitions between the phases intro-
duced. In Sec. IV we derive the scaling toward the exact
values for the Rényi entropies K(gq) = 0 or K(g) = o0
in the regular chaos phase and anomalous chaos phase,
respectively. In Secs. V, VI, and VII we investigate the
situations when PDLL decays slower than exponentially,
exponentially, or faster than exponentially, respectively,
with examples for the corresponding new types of inter-
mittencies. Section VIII is devoted to an outlook and
summary.

II. MULTIFRACTAL FORMALISM
FOR INTERMITTENCY

A. Encoding and multifractal spectra
of the dynamics

Here we give a brief summary of the multifractal theory
relevant for the present study [4,13-15]. Let us consider
an intermittent signal. The encoding of this signal can
be performed by using two finite symbol sets £ and &
being associated with the laminar and the chaotic states,
respectively. The choice of these symbols depends on
particular features of the system. In the following we
use the simplest symbolic dynamics which contains just
two symbols 0 and 1 corresponding to a partition of the
phase space in two distinct phases: phase 0 and phase 1.
[Note that the word “phases” has to be understood here
as indicating different regions in the phase space, in con-
trast to the names RCP, CCP, and ACP where it means
g phases, i.e., certain parts of the K(gq) spectrum.] Sym-
bol 0 always denotes a laminar state 0 € £, but symbol
1 could belong to either £ or &£; denoting a chaotic or
another laminar state (see Sec. V). The use of this simple
encoding is motivated by the fact that it turns out to be
sufficient to characterize type-II and -III intermittency
[11,12]. Note, however, that to describe type-I intermit-
tency at least three (two laminar and one chaotic) sym-

bols are needed [7]. In what follows we use the simple
symbolic dynamics in order to present the main features
of the multifractal theory. The case of type-I intermit-
tency will be discussed in Sec. VIII.

For intermittent systems a nontrivial natural measure
need not exist because of the dominating laminar behav-
ior. In the following we consider strictly chaotic inter-
mittent systems with positive averaged Lyapunov expo-
nent and a nontrivial natural measure ensuring, there-
fore, that the probabilities defined below exist. Let us
take a partition function

Zn(a) = D [p({si}n))% (1)
{si}n

where s; is either O or 1 assigned to either phase 0 or
phase 1, and p({s;}r) is the probability of finding a cer-

tain symbolic code of length n: {s;}, = {s1,82,...,3n}.
The behavior of Z,(q) for large n is expected to be
Zn(q) ~ exp [P(g)n], (2

" with P(q) = K(q)(1—q), where K(q) is the order-q Rényi

entropy [8]. P(g) is the metric analog of what is called in
the mathematical literature the topological pressure [16].

B. The SH model

In the SH model, the 0’s and 1’s of the symbolic dy-
namics always correspond to the laminar and chaotic
states, respectively. The basic idea is to factor the prob-
ability of a symbol sequence p({s;}n) by using the con-
ditional probabilities p(s; | $;+18i+2--) of finding a se-
quence S;+18;+2 - after s;. A given symbol sequence
contains finite blocks of 0’s and 1’s. The characteris-
tic time spent in the laminar region (0) is much longer
than in the chaotic one. Therefore, the system will have
a short-range memory on what happened in phase 1
if it is in phase 0 [17]. The SH model assumes that
this is in fact a one-step memory, i.e., we can write
p(---10[00---01) = p(0|00---01). By writing the prob-
ability distribution p(0|00---01) of laminar lengths as

p(0]00---01) = co exp [-Wo(4)], (3)
j=1

one can introduce Wy(j), a non-negative function, satis-
fying the conditions

-1

Wo(1) =0, co=|D exp[-Wo()]| >0. (4

j=1

In the remainder of the paper we assume that Wy(j) is an
increasing function for large j values, thus p(0]|0---01) ~
exp [-Wo(j)] decreases with j.

Although this short-range-memory approximation in-
troduces considerable errors when computing the K(q)
values (we found differences up to 50% with respect to
the exact one), however, it yields the ezact value for the
critical point ¢ = ¢, where a phase transition occurs, be-
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cause it uses the correct scaling around p(0|00---00- - -).

In the SH model the authors also suppose that the
dynamics in the chaotic state can be represented by a
Markov process. This means that the corresponding dy-
namical system has a one-step memory in phase 1. One
can then write

p(L[1L---10) = p(1[1)’"'p(1|0) = ¥ a, (5)
j—1
where ’
a=p(1]0), b=p(1(1). (6)

The constants a and b must then satisfy the normaliza-
tion requirement

a+b=1. )

The SH theory proves that the (metric) topological pres-
sure P(q) can be obtained from the implicit equation

)‘SH(P(Q)’ Q) =1, (8)

where Asu(P,q) is the largest eigenvalue of the matrix
TSH:

Tsu = ( ol S—P cgbd‘;é}_’bq) ) ) (9)
and
®(P,q) = Y _exp[-Pj — qWo(j)]. (10)
j=1

One thus finds an equation for the topological pressure
in the form

e P b7 + (ac)?®(P,q)] = 1. (11)
This equation allows the only solution P(q) = 0 for ¢ >
gc = 1 if the PDLL exhibits a power-law decay [4]. We
have not shown the derivation of these results here since a
slightly more general version of the same formalism shall
be worked out in detail in the next subsection.

C. An extended version of the SH formalism

As it is well known, nonanalyticies in the Rényi en-
tropies are always related to the anomalous scaling of
symbol sequence probabilities (or in terms of the dynam-
ical system theory, of cylinder measures) [18]. The SH
formalism correctly reflects the scaling of {00...01} sym-
bol sequence probabilities: the orbits staying close to an

J

oo 1 oo

eventually marginally stable fixed point in phase 0. This
is why it succeeds in describing the behavior of K(q)
above the critical point g..

In order to include in this formalism possible nonana-
lyticies of K(g) caused by an eventually anomalous scal-
ing in phase 1, we do not assume the Markov property in
this phase. We assume, however, that the system forgets
its history at the transition from phase 0 to phase 1 too,
and has an infinite-step memory inside each phase. We
thus write the PDLL for phase 1 as

P(L|1L:--10) = ¢y exp [-W1(j)], (12)

j—1

where the function W; () and the constant ¢, satisfy con-
ditions analogous to Eq. (4). These assumptions do not
mean a considerable improvement from the point of view
of the calculated K(g) values, but this modified formal-
ism is able to give the ezact critical points of the K(q)
spectra in both phases.

In the extended formalism, we assume that the
p({si}n) probabilities can be factor as

p(Sl e Sn) = p(Sll)p(Sll, SIZle)p(SIZ’ 3:%.7'2) o 'p(s;cy Sll:jk)’

(13)
where
co / i /
p(s,s',j) = p(SI%ﬂjS) et (14)
0 if s=¢
and
S1=81, Spu=Sltji4timys M=2,...,k (15)

In Eq. (13) a periodic boundary condition was assumed,
which becomes irrelevant in the thermodynamic limit.
Let us consider the generating function (:

((Pg) =) e "Z,(g). (16)
n=1

For n >> 1, one can write

S~ (P~ _ _e P
¢(P,q) ~ ;6 ={—rr@ 17

as long as P > P(q). Fixing q and varying P, P = P(q)
is the smallest zero of the function 1/¢.

Using the factorization (13), the partition function can
be written as

Zn(@)=D_ ST bngstretinP(s1))2p(s1, 52, 1)1 D52, 83, 52)]% - - - [D(sk, 81, 3k)]% (18)

k=1 81,...,8x=0 j1,...,jx=1
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where § denotes the Kronecker symbol. The generating
function then becomes

=>" > [p(s1)]%s1|T|s2)

k=1 s81,...,8x=0

X(s2|T|s3) - (sk|T|s1)
oo 1
ZZ [p(51))%(s11T* | 51) (19)
k=1 81=0

where T is a 2 x 2

¢(Pq)

matrix with elements

oo
e Fi[p(s,s’,5)]2 if s#s
(51T]) = § 25 (519 (20)
0 if s=4¢".
Introducing the notation
Y(Pg) = Z exp [~Pj — ")) (21)

j=1

matrix T reads as

0 45 (P,
= (aulpg *°50) @

Due to this simple form of the matrix, the { function
becomes

. ©|T|1)(1|T]|0)

C(Pv q) = {[p(o)]q +p[(1)]q <0|Tl 1><1 |T| 0) (23)
On the other hand, the largest eigenvalue of T is
A(P(9),9) = (OIT| 1)(1|T| 0))"/*. (24)

From (24) and (23) we conclude that the smallest value
P = P(q), where the function ¢ is diverging, is given by

A(P(9),9) = 1. (25)
Equation (25) can then be rewritten as
(coc1)?¥(P(q), q)2(P(g),q) = 1. (26)

We note that matrix T is more general than the ma-
trix appearing in the SH formalism. In the limit of un-
correlated chaotic states, the eigenvalue equation for this
matrix becomes the same as in the SH theory. To see
this, let us suppose that the bursts occur in a Markov
process. Therefore, the probability of a symbol sequence
with j turbulent symbols 1 can be written as in Eq. (5).
By taking into consideration Egs. (12) and (5)

c1 = a, 27)

Wi(4)

follows, and Eq. (11) is recovered.

As results from Eq. (28), the property that chaotic
symbols are uncorrelated is equivalent with the linearity
of W1(j). A nonlinear form of Wi(j) means that there

=—(j —1)Inb (28)

are correlations between symbols, therefore we must not
write the probabilities of such sequences as products of
conditional probabilities. Also note that the deviations
from linearity can happen in two obvious ways: Wi(j)
increases either slower or faster than linearly in j. These
differences will be discussed in more detail in the follow-
ing sections.

III. CRITERIA FOR PHASE
TRANSITIONS—THE MAIN RESULTS

Our aim here is to study the conditions under which
phase transitions between the chaotic phases (chaotic,
regular, and anomalous chaos phase) arise. The criterion
for the existence of a phase transition follows from the
expression of ®(P, ¢) and ¥(P, q) (10) and (21). We have
nonanalycities in P(q) [therefore in K(g) too] whenever
at least one of the sums appearing in Eq. (26) is diverg-
ing. A divergence arises when the exponent Pj + qW (j)
becomes negative for any j above some finite jo [where
W (3) is a shorthand notation for either Wy (j) or W1 (j)].
As we shall see, this happens just in two situations cor-
responding to the limit cases when either

B(3) — 0 (29)
or
B(j) — oo, (30)
where the shorthand notation
BU) = —— W(J) (31)

has been introduced.

For the case when W (j) increases slower than linearly,
one observes that if P(q) were negative for ¢ > 1, the
matrix element cg®(P, q) [or ¢} ¥ (P, g)] would be infinite,
therefore the solution of Eq. (26) would not exists. Thus
we conclude that P(qg) =0 forg >1and g =¢qg. =1 is
a CCP-RCP phase transition point [5,6,19]. This case is
discussed in detail in Secs. IV and V.

For the second case when W (§) is increasing faster than
linearly, one also observes that if P(q) were a positive
finite quantity [P(0) = In 2] for ¢ < 0, the matrix element
c3®(P,q) [or c]¥(P,q)] would be infinite, therefore the
solution of (26) would not exist. Then for ¢ < 0 we get
P(g) = 4+o0, ie., ¢ = 0 is an ACP-CCP phase-transition
point with an infinite jump.

The central result of this paper is to establish condi-
tions for phase transitions in terms of the W () functions
which are explicitly measurable quantities from time se-
ries. These results can be summarized as follows.

(i) There is a phase-transition point at ¢ = 1, and
P(q) = 0 for ¢ > 1 whenever 8(j) — 0 for at least one of
the W (j) functions (or symbols).

(ii) When B(j) — « (o is a nonzero positive finite
number) for all the W(j) functions, the whole entropy
spectrum is smooth, and no phase transition occurs.

(iii) There is another phase transition at ¢ = 0, and
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P(q) = 4oo for ¢ < 0 whenever 3(j) — oo for at least
one of the W (j) functions.

Moreover, we prove that both in the regular (RCP)
and anomalous (ACP) phases the topological pressure
converges to the corresponding limiting values 0 and oo,
respectively, in a way that is determined solely by the
asymptotics of the PDLL (see Sec. IV). In particular,
defining Px(q) as the solution of the eigenvalue equation
A(Px(q),q) = 1 for the matrix T, in which the first &
terms are kept in the divergent sums (¥,®, or both), we
find for the limiting behavior Pi(¢q) — P(q) that

Pi(q) ~ —qB(k),

This formula also shows that properties (29) and (30)
imply the existence of an RCP and ACP, respectively.
In order to classify intermittent systems (where the
PDLL takes on relatively large values for short and in-
termediate lengths) from the point of view of the gener-
ated chaotical phases, we are interested in the probability
distribution of the laminar lengths, i.e., in those W (j)
functions which describe laminar symbols. Symbol 0 is,
by definition, a laminar one, but in certain cases sym-
bol 1 might also appear in long laminar blocks. As we
shall see in Secs. V-VII, not only case (i) (as it is widely
believed), but also (ii) and (iii) can occur for laminar
symbols. Therefore, one can distinguish three types of
intermittencies: classical intermittency, when 8(j) — 0;
borderline intermittency, when 8(j) — a; and anomalous
intermittency, when (8(j) — oo, for a laminar symbol.
In order to illustrate more properly the classification, in
Secs. V-VII we direct our attention to the class of one-
dimensional maps which show fully developed chaos.

k> 1. (32)

IV. ASYMPTOTIC FORMS IN THE REGULAR
AND ANOMALOUS PHASES

In order to characterize the approach to the exact value
of P(q) we shall use the following technique: cut off the
sum (10) at a finite value k >> 1, i.e., consider

k
®1(P,q) = »_exp[-P(q)j — gWo(j)]. (33)

j=1
Let Pg(q) the solution of the equation

Me(Pe(9),9) =1, ¢<1, k> 1, (34)

where Ay is the largest eigenvalue of the truncated matrix
Ty constructed as in (22) with ®j instead of ®. The
explicit form of (34) is

Me(Pr, @) = (coc1)? ¥ (Pr, q) @k (Pk,q) = 1. (35)

A. RCP situation [¢ > 1 and Bo(k) — 0]

The following inequality is valid:

k
®4(P,q) = ) _exp[—Pj — qWo(3)]
j=1
1—e Pk _ vk
ST - )-P
> TP ¢ aWo( . (36)

Let us take a special value of P, namely P = —gfBy(k).
Then we obtain for k > 1

e3P0 (k) _
Di(~abo(k),0) > —gmy— (1 —e Wok)) > 1. (37)

We assume that the behavior of symbol 1 is normal, i.e.,
B1(3) = @ (0 < a < 00). Thus

Wi (—gPo(k),q) =) _ exp{—qj[B1(5) — Bo(k)]}

j=1

~ > exp(—qja) (38)
=1

is a finite number. One also observes that A\ (P,q) is a
decreasing function of P, i.e.,

Ok

From (37) it follows that for k > 1

Ak(—gbo(k),q) > 1. (40)
Now, due to (35), (39), and (40) we get
—qBo(k) < Py < 0. (41)

Next, we show that the asymptotic behavior (32) holds.
Equation (35) is equivalent to

@k (Pr,q) — C =0, (42)

where C = c; %7 9¥~! > 1 by taking into consideration
(38) and the expression of c; ? and ¢; 7 (4).

One can assume for k£ > 1 that every term in ®y,
except the first (j = 1), can be majorated by the last one
(the kth) as

exp{—k[Px + qBo(k)]} > exp{—j[Px + ¢Bo(5)]},

i=2,...,k—1. (43)
Thus, from (42) it follows that
(k — 1) exp{—k[Px + gBo(k)]} + e P —C > 0. (44)

This results in

In(k—1)

P < ~gfio(k) + % (45)
From (41) and (45) we conclude that for k> 1
Pr(q) ~ —qfBo(k), (46)

provided Wy(k) > Ink. Otherwise condition (4) is vio-
lated.
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B. ACP situation [g < 0 and Bg(k) — o0]

As mentioned in Sec. III, P, must diverge in this case.
Therefore

= i exp{—j[Px + a61(5)]}

j=1

oo
=~ Zexp (—jPy) ~ e P 47
j=1

Vi (Pryq)

since Py is much larger than ¢B:(j) = qo for k > 1.

Then, Eq. (35) reads

jz:;exp [“(j +1) (P +4q O(J))] — (coc1)™ =0.

(48)
The following inequalities hold:

exp [ (k+1) (P +gq kO( ))] < (coc1) 79, (49)
oo 41 (1 o)

>exp[——(j+1)(P 4L "(J))], j=1,...,k

(50)
This means
Wo(k) ln(cocl) Wo(k)
%1 TRy <D< mepiy
In(epe;)  In(k+1)
kE+1 k+1 °
(51)
The latter formula is equivalent to saying that
Py(g) ~ —qBo(k) (52)
8.00 1
Pi(q) (b) -
4.00 ] (a) -
N -
0.00 Homrreire - .
0 50 100

FIG. 1. Pk(g) (solid line) and —gqBo(k) (dashed line) vs the
truncating index k for a Gaussian intermittent system (see
Sec. VII) [Bo(k) ~ (k — L)?/k] for L = 10 and p(1|0) = 0.25
at (a) ¢ = —0.05 and (b) ¢ = —0.08.

30.00
Pk(Q) s
20.00 1 /{//’/’
/;/ ¢///
//’/
3 ///
10.00 { /
1
/i
0.00 FrrerrrrerrrreerreeT—e
0 50 100

k

FIG. 2. Py(q) (solid line) and —gfBo(k) (dashed line) vs the
truncating index k for Bo(k) = Ink and p(1]0) = 0.25 at
qg= —b5.

for K — oo. From (52) Kix(q) ~ ¢Bo(k)/(g — 1) fol-
lows. Figures 1 and 2 serve as numerical evidence for the
scaling formula (52), solving (34) by using the tangent
method for two different choices of Bo: Bo(k) ~ (k—L)2/k
and Go(k) ~ Ink, respectively. Note that Py(q) is very
close to —gWy(k)/(k + 1) even at lower k values (about
100).

The anomalous scaling of the PDLL, both in the RCP
and in the ACP, has consequences for the scaling of the
partition sums, too. Analyzing the formalism presented
in Sec. II C, one can observe that for large enough n and
k, the truncating index k can be replaced by n. There-
fore, we conjecture that for large enough n the partition
function (1) scales as

Zn(q) ~ exp [-gW (n)]. (53)

This is a generalization of the form suggested in Ref. [9],
where In Z,(q) ~ G™(¢q) was assumed in the ACP with
G(q) > 1 being some finite function of q.

V. CLASSICAL INTERMITTENCY

The W(j) function for a laminar state is determined,
on one hand, by the specific form of the map around
the fixed point and, on the other hand, by the reinject-
ing branch. Therefore, classical intermittency can be ob-
tained either by a marginally stable fixed point and uni-
form reinjection [Fig. 3(a)] or by an unstable fixed point
and a suitable choosen reinjecting branch with a strong
singularity [Fig. 4(a)] [18]. Althought only the first case
is intermittent in the sense of Pomeau-Manneville [11,12],
as we can observe in Figs. 3(b) and 4(b), both cases
show qualitatively the same intermittent signal. In our
sense, not only type-II and -IIT intermittency [where
Wo(j) is a power-law function [1,4]] belong to classical
intermittency, but also some intermittent maps without
a marginally stable fizred point but with a strong singular
reinjection (see Appendix, case I), which exhibit a phase
transition at g = 1 [18]. In order to understand this
phenomenon, let us say a few words about it in terms
of the dynamical systems theory. A phase transition oc-
curs in the Rényi entropies K (q) whenever there exists a
cylinder probability with anomalous scaling. In the sec-
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FIG. 3. (a) Map with a marginally stable fixed point and
uniform reinjection and (b) the generated intermittent signal
after omitting the transients.

ond case the cylinder length scaling is exponential, but
the invariant density is singular around the fixed point.
This corresponds to the existence of an unstable fixed
point with singular reinjection. The same situation was
pointed out by Bene and Szépfalusy; see Ref. [18].

Up to now, we have focused our attention on the possi-
ble effects of the intermittent phase 0 on the K(q) spec-

(a)
fix)

1.0 (R . A

(b) 5.+

Xn

05 I

0.0 Ldiii jdi jiid d_ jiiiiiiiii o
0 400 800
n

FIG. 4. (a) Map with unstable fixed point and strongly
singular reinjection [Appendix, case I] and (b) the signal gen-
erated. One can observe intermittent signal, although no
marginal fixed point exists.

800

FIG. 5. (a) Map with two marginal fixed points. The en-
coded signal consists of two kinds of laminar states. (b) The
bursts observed in the generated signal are in fact short lam-
inar states.

tra. However, in specific 1D maps, a possible anoma-
lous scaling in phase 1 could also cause additional non-
analyticies in K(g). Our modified formalism takes into
consideration these phenomena, too. According to this,
ther{e are; ]two possibilities [here 8;(j) stands for W;(j)/4,
i€ {0,1}].

§i0Gj i

0.0 1 VALY ‘

0 400 800
n

FIG. 6. (a) Lorenz type map, which shows the dou-
ble-phase transition (CCP-RCP and ACP-CCP) and (b) the
generated signal. Comparing with Fig. 3(b), the effect of the
superunstable fixed point shows up in the low point density
in the upper half of the figure.
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(a) Bo(3) — 0 and B1(j) — 0 and (1 € &;1). Thisis a
very interesting physical situation because in the signal
we observe just two kinds of laminar states (see Fig. 5).
Chaos, however, still exists since the two laminar states
alternate with chaotically varying lengths. It can be ob-
served that we then have just a single phase-transition
point at ¢ =1 and P(g) = 0 for ¢ > 1 (RCP). Following
the same arguments as in Sec. IV, it can be shown that
the convergence of Py(q) towards O is governed by the
minimum of 8(k), i.e., by

B(k) = min{Bo(k), B1(k)}.

(b) Another interesting case is when Bp(j) — 0 and
B1(j) — oo. Here we have a double phase transition
which is due to the coexistence of a marginally stable
and a superunstable fixed point. A good example is a
Lorenz-type map investigated in Ref. [22]; see Figs. 6(a)
and 6(b).

VI. BORDERLINE INTERMITTENCY

As mentioned in the Introduction and Sec. III, our def-
inition of intermittency allows cases when Gy(j) does not
go asymptotically to zero, provided the PDLL takes on
nonnegligible values for short and intermediate lengths.
Here we consider cases when (o(j) — const, which im-
plies the absence of any phase transition in the K(q)
spectrum as follows from the previous discussion.

The name “borderline” is choosen because the set of
B(j) functions belonging to this case (the asymptotically
constant ones) is of measure zero in the set of the possi-
ble 8(j) functions, and provides a “border” between the
classes characterized by different dynamical phase tran-
sitions, that is, by asymptotic behaviors (29) and (30).

Intermittency is not necessary related to the existence
of a marginally stable fixed point [18]. In this case we
might observe intermittent behavior when ¢, the limiting
constant of By(7), is much less than unity.

As a more interesting situation, let us suppose that the
system posesses a marginal fixed point. How is it pos-
sible to have an exponential scaling of the PDLL p(0 |
0---01) ~ e~% or of the natural measure around such a
fixed point? This could happen because Wy(j) character-
izes the asymptotic properties of the signal which could
reflect the result of the competition between the marginal
fixed point and other eventually existing singularities. To
ensure the exponential decrease of the PDLL, one needs a
special form for the reinjecting branch with a strong sin-
gular piece which cannot be expressed in a polynomial
form. To see this, let us consider the simple case when
z. is a singular point of the reinjecting branch, mapped
in one step into the intermittent fixed point (Fig. 7). In
the Appendix we calculated F}(y), the inverse of the rein-
jecting branch around this singular point in order to have
a given dependence for Bo(j) = Wo(j)/j if 7 > 1. In the
present case Go(j) = 75"~ !, where v and 7 are positive
constants and 7 = 1 (Appendix, case II). It can be ob-
served that F(y) near y = 0 is fairly singular, depending
on y via exp (—6%), where § = v[f”"(0)]~", provided the
origin is a marginally stable fixed point [f'(0) = 1].

K R Y
0 2 ek 1

FIG. 7. Map with strong singular reinjection. The singular
point z. is mapped in one step onto the fixed point from the
origin. The points z; are the preimages of z., taken by Fp
and y;, the image of z;, taken by the F; branch. One can
observe that the probability of an intermittent orbit of length
j is proportional to the distance y; — yj4+1 for j > 1.

We are emphasizing that the strong singularity of
Fi(y) needed for the exponential decay of the PDLL (for
j > 1) holds in a very small neighborhood of y = 0
(or z = z.) only. The intermittent behavior around the
marginally stable fixed point (z = 0) is “screened” in a
very small vicinity, say in the interval [0,€) (e < 1). The
shape of the reinjecting branch further than € (y > €) is
assumed to be locally linear. Therefore, the narrow chan-
nel formed by Fp(y) and the first diagonal has a width
of order € in the region z > e which is not screened and
is responsible for the intermittent behavior observed.

VII. ANOMALOUS INTERMITTENCY

As we have seen in the preceding section, intermit-
tency is not necessarelly related to the condensed (RCP)
phase. In the case of borderline intermittency, the PDLL
is characterized by an exponential decay. However, it is
possible to find a faster than exponential PDLL too. As
follows from Secs. III and IV, this introduces an anoma-
lous chaos phase for ¢ < 0, thus a phase transition occurs
at ¢ = 0 with an infinite jump.

Here the considerations of the last paragraph of Sec. VI
also hold, namely the intermittent behavior is generated
by the “nonscreened” part, x > € of the branch 0.

As an example for this type of intermittency, let us
consider the map sketched in Fig. 7 with the claim that
Bo(j) — oo. With the notations of the Appendix, let
us consider for, e.g., Bo(4) = vj~", v > 0, 7 > 1, and
the map f having the first diagonal as tangent in the
origin. A strong dependence of F)(y) on y in the form of
(%)I‘Te_‘s(l/ )" follows (see Appendix, case IT) which is
stronger than in the borderline case (when 7 = 1).

It is interesting to consider cases where the PDLL ex-
hibits a definite maximum at some laminar length L > 1.
In particular, we shall assume that the probability distri-
bution of laminar lenghts is approximated by a normal
distribution. For the sake of simplicity, we shall refer
to this case as a Gaussian intermittent system (GIS).
Thus for a GIS W(j) ~ (§j — L)?, where L is the most
probable laminar length. It is obvious that By(j) — oo,
and ACP exists for ¢ < 0. Figure 1 shows the function
Py (q) vs k for two different g values at a fixed L. We
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can observe an interesting feature which is typical for
anomalous intermittency (so for GIS): the existence of a
k-independent region for Py(q) (horizontal line) and an-
other one which characterizes the scaling (32) at large
k. The transition between the two regions takes place
smoothly, but in a very thin interval. Rigourously speak-
ing, the k independent region is not exactly k& indepen-
dent, but the dependence shows up just in the ninth and
tenth digits. This can be explained by the fact that the
new term, which appears in Eq. (48) by increasing k, is
very small: the part exp [—Pg(k + 1)] (P, > 0) decreases
more rapidly than the exponential exp [—g(k — L)?] in-
creases for L < k < 60 (in the special case of Fig. 1).
For k greater than a certain value, exp [—q(k — L)?] be-
comes more important and the solutions exp (—Pi) be-
come smaller. Numerical simulations also show that the
g dependence of Pi(q) in the horizontal region is almost
linear [not just for large k, as seen in (32)]. With the
increase of the most probable laminar lenght L the hori-
zontal region becomes larger.

VIII. CONCLUDING REMARKS

The criterion given in this paper provides us with the
ability to decide whether there exist phase transitions
in the K(q) spectrum by studying just the intermittent
signal and deducing its PDLL without constructing ex-
plicitly the dynamics of the system. We tried to point out
that intermittency is a more complex phenomenon than
it is usually considered to be, even in simple 1D maps.
The point where this complexity comes from is the def-
inition of the intermittent behavior via an “eyeballing”
of the signal. This cannot distinguish usual intermit-
tent cases (in the Pomeau-Manneville sense) from other
ones and does not reflect the type of the time correlation
function. Defining the intermittency as we propose in
this paper gains a somewhat closer image concerning the
possible phase transitions in the spectrum of the Rényi
entropies. It is worth emphasizing again that the exis-
tence of a marginally stable fixed point is neither a nec-
essary (Sec. V) nor a sufficient condition (Secs. VI and
VII) for intermittency in contrast to the general belief.

If we are using more symbols to encode the signal, the
main results presented in Sec. III remain valid because,
in spite of the fact that the matrix T' becomes more com-
plicated (for NV symbols T is an N x N matrix), it has en-
tries of type ®;(P,q) = E;‘;l exp [—Pj — gW;(j)] (where
1 stands for the ith symbol), with zeros on the diagonal;
therefore the criterion above still holds. Even the scal-
ing formula (32) remains valid with 3(k) now being the
slowest behaving function between the symbols satisfying
(29) or (30) in the regular chaos phase and the anomalous
chaos phase, respectively.

Phase transitions connected with type II and III are
well described by the SH model, but type I needs a more
careful treatment because of the existing narrow channel
rather than a marginally stable fixed point. This intro-
duces qualitative differences, e.g., in the value of the crit-
ical point g., which might become in this case less than
1 [6,20,21], or in the scaling behavior near the critical

point which is characterized by exponents depending on
the value of g [7]. The only change needed in the SH
formalism to characterize type-I cases is the introduction
of three symbols: two for laminar states —1,0 € £ and
one for chaotic ones 1 € &. In this case, T is a 3 x 3
matrix for which Eq. (25) reads

e Pl =1, (54)
(COCI)qCD(Pa q)‘ll(Pv Q) =1, (55)

where ¢ is the same as defined in (4), but c; satisfies the
normalization condition (e1+¢}) 372, exp [-Wi(j)] =1,
with ¢; = p(1]0) and ¢j = p(1|—1). Note that Eq. (55)
is the same as (26), but there is an extra solution given
by Eq. (54) in the form of P(q) = 0. Due to the fact that
now ¢1 352, exp[—-Wi(j)] < 1, Eq. (55) can be fulfilled
by the solution P(q) = 0 at ¢ = g, < 1. Physically, this
is explained by the existence of a repellor in the phase
space with Hausdorff dimension ¢, and ¢} characterizing
the escape from this repellor (see also Ref. [20]).

The SH or the extended model takes into considera-
tion exactly only the scaling behavior around the main
fixed points 00---0--- and 11---1--.. The other pe-
riodic points are taken into consideration just approx-
imately, which can cause serious errors. We believe
that, by taking into consideration more unstable peri-
odic points, the theory gains an improvement such that
it can be applied to nonintermittent cases too. This needs
to give the W;(j) functions for a few primitive cycles as
i € {0,1,01,001,101,...} and the corresponding transi-
tion probabilities. We expect that the number of cycles
needed is small such that the eigenvalue equation for the
matrix T can be handled relatively easy. A detailed anal-
ysis of these problems would be interesting.
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APPENDIX

As we have seen in Sec. V, the PDLL is determined by
the map around the fixed point and, on the other hand,
by the reinjecting branch. Let us consider a map f with
the presentation functions Fy and F; denoting the two
inverse branches of f. Suppose that the behavior around
the fixed point is governed by (the given function) Fp.
Here we solve the problem of what the form of the rein-
jecting branch Fj around the singular point z., which is
mapped in one step onto the origin [see Figs. 4(a) and 7],
should be in order to obtain a probability distribution for
the laminar lengths characterized by a given Wy(j) func-
tion. First, we derive the general formula and then work
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out some particular cases in order to see the screening
effect of the singular point z. on the fixed point.

Let us define the points z; as the preimages of . taken
by EF 0,

zjp1 = Fo(xj), o ==z, (A1)

and y; as their image taken on the F; branch,
Yi+1 = Fi(z;) (A2)

[see Figs. 4(a) and 7]. If j > 1, one can write
p(0]0---01) = &(y; — yj41), (A3)

Jj—1

where & is a constant. Using the relation f/(y;4+1) =
[f(y;) — f(y5+1))/(y; — yj+1) and Egs. (A1) and (A2),

Y5 — Yi+1 = Fi(z;)(f(z;) — z5). (A4)
Introducing the step function
J(@) =7 if z€ (z5,25-1], (A5)
and using (3), Eq. (A3) becomes
coe™FNWIW — kFW)(f) -y),  (46)
where y = z;. This is equivalent to
Fly) = ﬂ,e—(ﬁoOJ)(y)J(y) 0<y<l, (A7)

f-y 7

with &’ = co/k. For given Bo(j) and f(z) (0 < z < z.)
functions Eq. (A7) can be solved by direct integration.

In the following we restrict ourselves to a class of Gy (j)
functions of the form

ﬂO(J) = 7jT~17

As follows from (A7), the form of the reinjecting branch
Fy(y) around y = 0 is determined solely by the slope of
the other branch taken at the origin. Therefore the cases
f'(0) > 1 and f/(0) = 1 have to be treated separately.
Case I f'(0) > 1 [see Fig. 4(a)]. Around the origin

¥, 7 > 0. (A8)

fy) —y = [f(0) — 1]y = ay. (A9)
Consequently, for the function J(y) we obtain
1.1

Inserting (A8)-(A10) in (A7), we get, after integration,

o0 T
e “? dz,

Fi(y) =xc+n’/ (A11)

Inl/y

where w = va~7. The expression above can be trans-

formed into

1 o0
F, =z, ’___—/ “Yvids, A12
1Y) =z + K o |, e Yvds ( )

where s = £ — 1 and v, =w(ng)” - coasy — 0.
The integral can be expressed by means of the Whittaker
functions W, [23] as

e 3/2 —uo/2
dv = v "e "% W, /5 14.5/2(v0). (A13)
vo

v—8

Using the asymptotic expression of W, /2,1+s/2(V0) (vo >
1) [23] finally results in

1—7
Fi(y) =z.+C4 (m %) e~wn1/y)", (A14)

Obviously, we have an RCP whenever 0 < 7 < 1; see
(A8). Therefore, the map f will generate qualitatively
the same signal as a model for type-II or -III intermit-
tency [see Fig. 3(b) and 4(b)]. This is accompanied by a
CCP-RCP transition in the K (g) spectrum at ¢ = ¢, = 1,
in spite of the absence of a marginally stable fixed point
(see Sec. V). If 7 = 1, then Fi(y) = z. + C1y¥ is a
power-law function and no phase transitions occur in the
K(q) spectrum. Similarly, the case of 7 > 1 does not
correspond to an intermittent system either.
Case II: f'(0) =1 (see Fig. 7). Around the origin

1
F) -y~ 5" (0)y* = by*. (A15)
This yields, for 7,
1
J(y) ~ by (A16)

So, Eq. (A7) reads

1 —_ =T
Fity) = &' 53¢,

where 6 = vb~7. After evaluating the integral above, we
obtain

1 C:
F = T Sl —v8
1Y) =z, + & sz /wo e Yv'ds (A17)

with wg = 6y~ — oo as y — 0. Using the same approx-
imations as in case I, finally we get

1\'"" .
Fi(y) =z.+C2 (5) e 00/v)7, (A18)

It is evident that for 7 = 1 Fj(y) depends on y via
exp (—6%), which shows the strong singularity needed to
cancel the phase transition. If 7 > 1, then the reinject-
ing branch around y = 0 takes a more singular form (A7)
as in the borderline case (7 = 1), and in the K(q) spec-
trum we observe the CCP-ACP transition. For 7 < 1 the
reinjecting branch enhances intermittency and does not
remove the RCP phase.
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